EconPapers    
Economics at your fingertips  
 

Nearest neighbor estimates of regression

Kjell A. Doksum, Jiancheng Jiang, Bo Sun and Shuzhen Wang

Computational Statistics & Data Analysis, 2017, vol. 110, issue C, 64-74

Abstract: New nearest neighbor estimators of the nonparametric regression function and its derivatives are developed. Asymptotic normality is obtained for the proposed estimators over the interior points and the boundary region. Connections with other estimators such as local polynomial smoothers are established. The proposed estimators are boundary adaptive and extensions of the Stute estimators. Asymptotic minimax risk properties are also established for the proposed estimators. Simulations are conducted to compare the performance of the proposed estimators with others.

Keywords: Empirical plug-in estimation; Local polynomial; Boundary adaptive; Minimax efficiency (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947317300014
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:110:y:2017:i:c:p:64-74

DOI: 10.1016/j.csda.2016.12.014

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:csdana:v:110:y:2017:i:c:p:64-74