Regression analysis of current status data in the presence of dependent censoring with applications to tumorigenicity experiments
Shuwei Li,
Tao Hu,
Peijie Wang and
Jianguo Sun
Computational Statistics & Data Analysis, 2017, vol. 110, issue C, 75-86
Abstract:
Current status data frequently occur in many fields including demographic studies and tumorigenicity experiments. In these cases, the censoring or observation time may be correlated to the failure time of interest, the situation that is often referred to as dependent or informative censoring. Although several semiparametric methods have been developed in the literature for the situation, they either only apply to limited situations or may be computationally unstable. To address these, a frailty model-based maximum likelihood approach is proposed with the use of monotone splines to approximate the unknown baseline cumulative hazard function of the failure time. Also a novel EM algorithm, which is based on a three-stage data augmentation and can be easily implemented, is presented. The proposed estimators are proved to be consistent and asymptotically normally distributed. An extensive simulation study is performed to assess the finite sample performance of the proposed approach and suggests that it works well for practical situations. An application to a tumorigenicity study is provided.
Keywords: Dependent censoring; Frailty model approach; Monotone splines; Proportional hazards model (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947316303115
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:110:y:2017:i:c:p:75-86
DOI: 10.1016/j.csda.2016.12.011
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().