Bayesian local influence of semiparametric structural equation models
Ming Ouyang,
Xiaodong Yan,
Ji Chen,
Niansheng Tang and
Xinyuan Song
Computational Statistics & Data Analysis, 2017, vol. 111, issue C, 102-115
Abstract:
The authors develop a Bayesian local influence method for semiparametric structural equation models. The effects of minor perturbations to individual observations, the prior distributions of parameters, and the sampling distribution on the statistical inference are assessed with various perturbation schemes. A Bayesian perturbation manifold is constructed to characterize such perturbation schemes. The first- and second-order influence measures are proposed to quantify the degree of minor perturbations on different aspects of a statistical model via objective functions, such as Bayes factor. Simulation studies are conducted to evaluate the empirical performance of the Bayesian local influence procedure. An application to a study of bone mineral density is presented.
Keywords: Bayesian local influence; Latent variables; Markov chain Monte Carlo methods; Perturbation schemes; Semiparametric modeling (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947317300208
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:111:y:2017:i:c:p:102-115
DOI: 10.1016/j.csda.2017.01.007
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().