EconPapers    
Economics at your fingertips  
 

Smooth conditional distribution estimators using Bernstein polynomials

Mohamed Belalia, Taoufik Bouezmarni and Alexandre Leblanc

Computational Statistics & Data Analysis, 2017, vol. 111, issue C, 166-182

Abstract: In a variety of statistical problems, estimation of the conditional distribution function remains a challenge. To this end, a two-stage Bernstein estimator for conditional distribution functions is introduced. The method consists in smoothing a first-stage Nadaraya–Watson or local linear estimator by constructing its Bernstein polynomial. Some asymptotic properties of the proposed estimator are derived, such as its asymptotic bias, variance and mean squared error. The asymptotic normality of the estimator is also established under appropriate conditions of regularity. Lastly, the performance of the proposed estimator is briefly studied through a few examples.

Keywords: Bernstein polynomials; Conditional distribution estimation; Mean squared error; Asymptotic properties (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947317300257
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:111:y:2017:i:c:p:166-182

DOI: 10.1016/j.csda.2017.02.005

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:csdana:v:111:y:2017:i:c:p:166-182