An optimal data ordering scheme for Dirichlet process mixture models
Xue Wang and
Stephen G. Walker
Computational Statistics & Data Analysis, 2017, vol. 112, issue C, 42-52
Abstract:
In recent years, there has been increasing interest in Bayesian nonparametric methods due to their flexibility, and the availability of Markov chain Monte Carlo (MCMC) methods for sampling from the posterior distribution. As MCMC methods are generally time consuming for computation, there is a need for faster methods, which can be executed within a matter of seconds. A fast alternative to MCMC for sampling the well known and widely used Dirichlet process mixture (DPM) model is investigated to draw approximate independent and identically distributed samples from the posterior distribution of the latent allocations, and then to draw samples from the weights and locations conditional on the allocations. To address the order depend issue of the proposed algorithm, an optimal ordering scheme based on a sequence of optimizations is proposed to first obtain an optimal order of the data, and then run the algorithm on this ordering. The fast sampling algorithm is assisted by parallel computing using commands within MATLAB.
Keywords: Allocation variables; Predictive density; Optimal ordering (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947317300385
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:112:y:2017:i:c:p:42-52
DOI: 10.1016/j.csda.2017.02.010
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().