Automatic generation of generalised regular factorial designs
André Kobilinsky,
Hervé Monod and
R.A. Bailey
Computational Statistics & Data Analysis, 2017, vol. 113, issue C, 311-329
Abstract:
The R package planor enables the user to search for, and construct, factorial designs satisfying given conditions. The user specifies the factors and their numbers of levels, the factorial terms which are assumed to be non-zero, and the subset of those which are to be estimated. Both block and treatment factors can be allowed for, and they may have either fixed or random effects, as well as hierarchy relationships. The designs are generalised regular designs, which means that each one is constructed by using a design key and that the underlying theory is that of finite abelian groups. The main theoretical results and algorithms on which planor is based are developed and illustrated, with the emphasis on mathematical rather than programming details. Sections 3–5 are dedicated to the elementary case, when the numbers of levels of all factors are powers of the same prime. The ineligible factorial terms associated with users’ specifications are defined and it is shown how they can be used to search for a design key by a backtrack algorithm. Then the results are extended to the case when different primes are involved, by making use of the Sylow decomposition of finite abelian groups. The proposed approach provides a unified framework for a wide range of factorial designs.
Keywords: Backtrack algorithm; Design key; Hierarchy constraint; Ineligible factorial term; Model specification; Multi-stratum design (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947316302110
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:113:y:2017:i:c:p:311-329
DOI: 10.1016/j.csda.2016.09.003
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().