Application of imperialist competitive algorithm to find minimax and standardized maximin optimal designs
Ehsan Masoudi,
Heinz Holling and
Weng Kee Wong
Computational Statistics & Data Analysis, 2017, vol. 113, issue C, 330-345
Abstract:
Finding optimal designs for nonlinear models is complicated because the design criterion depends on the model parameters. If a plausible region for these parameters is available, a minimax optimal design may be used to remove this dependency by minimizing the maximum inefficiency that may arise due to misspecification in the parameters. Minimax optimal designs are often analytically intractable and are notoriously difficult to find, even numerically. A population-based evolutionary algorithm called imperialist competitive algorithm (ICA) is applied to find minimax or nearly minimax D-optimal designs for nonlinear models. The usefulness of the algorithm is also demonstrated by showing it can hybridize with a local search to find optimal designs under a more complicated criterion, such as standardized maximin optimality.
Keywords: Approximate design; D-optimality; Evolutionary algorithm; Fisher information matrix; General equivalence theorem; Local search (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947316301517
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:113:y:2017:i:c:p:330-345
DOI: 10.1016/j.csda.2016.06.014
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().