Non-area-specific adjustment factor for second-order efficient empirical Bayes confidence interval
Masayo Yoshimori Hirose
Computational Statistics & Data Analysis, 2017, vol. 116, issue C, 67-78
Abstract:
An empirical Bayes confidence interval has high user demand in many applications. In particular, the second-order empirical Bayes confidence interval, the coverage error of which is of the third order for a large number of areas, m, is widely used in small area estimation when the sample size within each area is not large enough to make reliable direct estimates according to a design-based approach. Yoshimori and Lahiri (2014a) proposed a new type of confidence interval, called the second-order efficient empirical Bayes confidence interval, with a length less than that of the direct confidence estimated according to the design-based approach. However, this interval still has some disadvantages: (i) it is hard to use when at least one leverage value is high; (ii) many iterations tend to be required to obtain the estimators of one global model variance parameter as the number of areas, m, increases, due to the area-specific adjustment factor. To prevent such issues, this study proposes a more efficient confidence interval to allow for high leverage and reduce the number of iterations for large m. To achieve this purpose, we theoretically obtained a non-area-specific adjustment factor and the measure of uncertainty of the empirical Bayes estimator, which consist of empirical Bayes confidence interval, maintaining the existing desired properties. Moreover, we present three simulation results and real data analysis to show overall superiority of our confidence interval method over the other methods, including the one proposed in Yoshimori and Lahiri (2014a).
Keywords: Adjusted maximum-likelihood method; Confidence interval; Empirical best linear unbiased prediction; Fay–Herriot model; Linear mixed model; Small area estimation (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947317301500
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:116:y:2017:i:c:p:67-78
DOI: 10.1016/j.csda.2017.07.002
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().