Quantile regression for partially linear varying-coefficient model with censoring indicators missing at random
Yu Shen and
Han-Ying Liang
Computational Statistics & Data Analysis, 2018, vol. 117, issue C, 1-18
Abstract:
In this paper, we focus on the partially linear varying-coefficient quantile regression model when the data are right censored and the censoring indicator is missing at random. Based on the calibration and imputation methods, a three-stage approach is proposed to construct the estimators of the linear part and the nonparametric varying-coefficient function for this model . At the same time, we discuss the variable selection of the covariates in the linear part by adopting adaptive LASSO penalty. Under appropriate assumptions, the asymptotic normality of the proposed estimators is established, and the penalized estimators are proven to have the oracle property. Simulation study and a real data analysis are conducted to evaluate the performance of the proposed estimators.
Keywords: Quantile regression; Partially linear varying-coefficient model; Variable selection; Random censorship; Missing at random (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947317301548
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:117:y:2018:i:c:p:1-18
DOI: 10.1016/j.csda.2017.07.006
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().