EconPapers    
Economics at your fingertips  
 

Simultaneous estimation based on empirical likelihood and general maximum likelihood estimation

Junyong Park

Computational Statistics & Data Analysis, 2018, vol. 117, issue C, 19-31

Abstract: One typical problem in simultaneous estimation of mean values is estimating means of normal distributions, however when normality or any other distribution is not specified, more robust estimation procedures are demanded. A new estimation procedure is proposed based on empirical likelihood which does not request any specific distributional assumption. The new idea is based on incorporating empirical likelihood with general maximum likelihood estimation. One well-known nonparametric estimator, the linear empirical Bayes estimator, can be interpreted as an estimator based on empirical likelihood under some framework and it is shown that the proposed procedure can improve the linear empirical Bayes estimator. Numerical studies are presented to compare the proposed estimator with some existing estimators. The proposed estimator is applied to the problem of estimating mean values corresponding to high valued observations. Simulations and real data example of gene expression are provided.

Keywords: Empirical likelihood; General maximum likelihood; Estimation of mean vector (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S016794731730172X
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:117:y:2018:i:c:p:19-31

DOI: 10.1016/j.csda.2017.08.003

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:csdana:v:117:y:2018:i:c:p:19-31