EconPapers    
Economics at your fingertips  
 

Validation of community robustness

Annamaria Carissimo, Luisa Cutillo and Italia De Feis

Computational Statistics & Data Analysis, 2018, vol. 120, issue C, 1-24

Abstract: The large amount of work on community detection and its applications leaves unaddressed one important question: the statistical validation of the results. A methodology is presented that is able to clearly detect if the community structure found by some algorithms is statistically significant or is a result of chance, merely due to edge positions in the network. Given a community detection method and a network of interest, the proposal examines the stability of the partition recovered against random perturbations of the original graph structure. To address this issue, a perturbation strategy and a null model graph, which matches the original in some of its structural properties, but is otherwise a random graph, is specified. A set of procedures is built based on a special measure of clustering distance, namely Variation of Information, using tools set up for functional data analysis. The procedures determine whether the obtained clustering departs significantly from the null model. This strongly supports the robustness against perturbation of the algorithm used to identify the community structure. Results obtained with the proposed technique on simulated and real datasets are shown and discussed.

Keywords: Community; Network; Variation of information; Multiple testing (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations Track citations by RSS feed

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947317302347
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:120:y:2018:i:c:p:1-24

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Dana Niculescu ().

 
Page updated 2018-05-05
Handle: RePEc:eee:csdana:v:120:y:2018:i:c:p:1-24