Marginal maximum likelihood estimation of SAR models with missing data
Thomas Suesse
Computational Statistics & Data Analysis, 2018, vol. 120, issue C, 98-110
Abstract:
Maximum likelihood (ML) estimation of simultaneous autocorrelation models is well known. Under the presence of missing data, estimation is not straightforward, due to the implied dependence of all units. The EM algorithm is the standard approach to accomplish ML estimation in this case. An alternative approach is considered, the method of maximising the marginal likelihood. At first glance the method is computationally complex due to inversion of large matrices that are of the same size as the complete data, but these can be avoided, leading to an algorithm that is usually much faster than the EM algorithm and without typical EM convergence issues. Another approximate method is also proposed that serves as an alternative, for example when the contiguity matrix is dense. The methods are illustrated using a well known data set on house prices with 25,357 units.
Keywords: SAR model; EM algorithm; Marginal likelihood; Missing data; Maximum likelihood (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947317302396
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:120:y:2018:i:c:p:98-110
DOI: 10.1016/j.csda.2017.11.004
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().