Jeffreys priors for mixture estimation: Properties and alternatives
Clara Grazian and
Christian P. Robert
Computational Statistics & Data Analysis, 2018, vol. 121, issue C, 149-163
Abstract:
While Jeffreys priors usually are well-defined for the parameters of mixtures of distributions, they are not available in closed form. Furthermore, they often are improper priors. Hence, they have never been used to draw inference on the mixture parameters. The implementation and the properties of Jeffreys priors in several mixture settings are studied. It is shown that the associated posterior distributions most often are improper. Nevertheless, the Jeffreys prior for the mixture weights conditionally on the parameters of the mixture components will be shown to have the property of conservativeness with respect to the number of components, in case of overfitted mixture and it can be therefore used as a default priors in this context.
Keywords: Noninformative prior; Mixture of distributions; Bayesian analysis; Improper prior (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S016794731730261X
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:121:y:2018:i:c:p:149-163
DOI: 10.1016/j.csda.2017.12.005
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().