Small area estimation of general parameters under complex sampling designs
María Guadarrama,
Isabel Molina and
J.N.K. Rao
Computational Statistics & Data Analysis, 2018, vol. 121, issue C, 20-40
Abstract:
When the probabilities of selecting individuals (units) for the sample depend on the outcome values, the selection mechanism is said to be informative. Under informative selection, individuals with certain outcome values appear more often in the sample and, as a consequence, usual inference based on the actual sample without appropriate weighting might be strongly biased. An extension of the empirical best (EB) method for estimation of general non-linear parameters in small areas that handles informative selection by incorporating the sampling weights is proposed. Properties of this new method under complex sampling designs, including informative selection, are analyzed. Results confirm that the proposed weighted estimators significantly reduce the bias of unweighted EB estimators under informative sampling, and compare favorably under non-informative sampling. The proposed method is illustrated through an application to poverty mapping in a State from Mexico.
Keywords: Empirical best estimator; Informative sampling; Nested-error model; Poverty mapping; Unit level models (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947317302517
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:121:y:2018:i:c:p:20-40
DOI: 10.1016/j.csda.2017.11.007
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().