EconPapers    
Economics at your fingertips  
 

Group testing case identification with biomarker information

Dewei Wang, Christopher S. McMahan, Joshua M. Tebbs and Christopher R. Bilder

Computational Statistics & Data Analysis, 2018, vol. 122, issue C, 156-166

Abstract: Screening procedures for infectious diseases, such as HIV, often involve pooling individual specimens together and testing the pools. For diseases with low prevalence, group testing (or pooled testing) can be used to classify individuals as diseased or not while providing considerable cost savings when compared to testing specimens individually. The pooling literature is replete with group testing case identification algorithms including Dorfman testing, higher-stage hierarchical procedures, and array testing. Although these algorithms are usually evaluated on the basis of the expected number of tests and classification accuracy, most evaluations in the literature do not account for the continuous nature of the testing responses and thus invoke potentially restrictive assumptions to characterize an algorithm’s performance. Commonly used case identification algorithms in group testing are considered and are evaluated by taking a different approach. Instead of treating testing responses as binary random variables (i.e., diseased/not), evaluations are made by exploiting an assay’s underlying continuous biomarker distributions for positive and negative individuals. In doing so, a general framework to describe the operating characteristics of group testing case identification algorithms is provided when these distributions are known. The methodology is illustrated using two HIV testing examples taken from the pooling literature.

Keywords: Classification; Measurement error; Pooled testing; Screening; Sensitivity; Specificity (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations Track citations by RSS feed

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947318300069
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:122:y:2018:i:c:p:156-166

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Dana Niculescu ().

 
Page updated 2018-04-28
Handle: RePEc:eee:csdana:v:122:y:2018:i:c:p:156-166