A simple and fast method for computing the Poisson binomial distribution function
William Biscarri,
Sihai Dave Zhao and
Robert J. Brunner
Computational Statistics & Data Analysis, 2018, vol. 122, issue C, 92-100
Abstract:
It is shown that the Poisson binomial distribution function can be efficiently calculated using simple convolution based methods. The Poisson binomial distribution describes how the sum of independent but not identically distributed Bernoulli random variables is distributed. Due to the intractability of the Poisson binomial distribution function, efficient methods for computing it have been of particular interest in past Statistical literature. First, it is demonstrated that simply and directly using the definition of the distribution function of a sum of random variables can calculate the Poisson binomial distribution function efficiently. A modified, tree structured Fourier transform convolution scheme is then presented, which provides even greater gains in efficiency. Both approaches are shown to outperform the current state of the art methods in terms of accuracy and speed. The methods are then evaluated on a real data image processing example in order to demonstrate the efficiency advantages of the proposed methods in practical cases. Finally, possible extensions for using convolution based methods to calculate other distribution functions are discussed.
Keywords: Poisson binomial; Convolution; Fourier transform; Independent Bernoulli sum (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947318300082
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:122:y:2018:i:c:p:92-100
DOI: 10.1016/j.csda.2018.01.007
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().