Approximation error approach in spatiotemporally chaotic models with application to Kuramoto–Sivashinsky equation
J.M.J. Huttunen,
J.P. Kaipio and
H. Haario
Computational Statistics & Data Analysis, 2018, vol. 123, issue C, 13-31
Abstract:
Model reduction, parameter uncertainties and state estimation in spatiotemporal problems induced by chaotic partial differential equations is considered. The model reduction and parameter uncertainties induce a specific structure for the state noise process, and also modify the observation noise model. The nonstationary Bayesian approximation error approach (BAE) is employed to construct the state evolution and observation models. Earlier results have shown that the effects of severe model reduction and parameter uncertainties can be handled with the nonstationary BAE. The applicability of BAE to chaotic state evolution problems has not been investigated previously. The Kuramoto–Sivashinsky equation is considered with noisy measurements and, in addition, the related state space model identification problem is also considered. The results suggest that the nonstationary BAE is a potentially feasible approach for reduced order chaotic models and, when feasible, the accuracy of the state estimates is comparable to that of respective non-reduced order model.
Keywords: Nonstationary inverse problems; State estimation; Filtering; Spatiotemporal chaos; Chaotic models; Bayesian approximation error approach (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947318300240
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:123:y:2018:i:c:p:13-31
DOI: 10.1016/j.csda.2018.01.015
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().