Semiparametric spatial model for interval-censored data with time-varying covariate effects
Yue Zhang and
Bin Zhang
Computational Statistics & Data Analysis, 2018, vol. 123, issue C, 146-156
Abstract:
Cox regression is one of the most commonly used methods in the analysis of interval-censored failure time data. In many practical studies, the covariate effects on the failure time may not be constant over time. Time-varying coefficients are therefore of great interest due to their flexibility in capturing the temporal covariate effects. To analyze spatially correlated interval-censored time-to-event data with time-varying covariate effects, a Bayesian approach with dynamic Cox regression model is proposed. The coefficient is estimated as a piecewise constant function and the number of jump points estimated from the data. A conditional autoregressive distribution is employed to model the spatial dependency. The posterior summaries are obtained via an efficient reversible jump Markov chain Monte Carlo algorithm. The properties of our method are illustrated by simulation studies as well as an application to smoking cessation data in southeast Minnesota.
Keywords: Cox model; Interval censoring; Reversible jump Markov chain Monte Carlo; Smoking cessation data; Spatial correlation; Time-varying coefficient (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947318300264
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:123:y:2018:i:c:p:146-156
DOI: 10.1016/j.csda.2018.01.017
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().