Semiparametric regression analysis of clustered survival data with semi-competing risks
Mengjiao Peng,
Liming Xiang and
Shanshan Wang
Computational Statistics & Data Analysis, 2018, vol. 124, issue C, 53-70
Abstract:
Analysis of semi-competing risks data is becoming increasingly important in medical research in which a subject may experience both nonterminal and terminal events, and the time to the intermediate nonterminal event (e.g. onset of a disease) is subject to dependent censoring by the terminal event (e.g. death) but not vice versa. Typically, both two types of events are dependent. In many applications, subjects may also be nested within clusters, such as patients in a multi-center study, leading to possible association among event times due to unobserved shared factors across subjects. To incorporate dependency within clusters and association between two types of event times, we propose a new flexible semiparametric modeling framework where a copula model is employed for the joint distribution of the nonterminal and terminal events, and their marginal distributions are modeled by Cox proportional hazards models with random effects. A nonparametric maximum likelihood estimation procedure is developed and implemented through a Monte Carlo EM algorithm. The proposed estimator is also shown to enjoy desirable asymptotic properties. Results from extensive simulation studies indicate that the proposed method performs very well in finite samples and is especially robust against misspecification of the random effects distribution. We further illustrate the practical utility of the method by analyzing data from a multi-institutional study of breast cancer.
Keywords: Copula; Clustered data; Monte Carlo EM algorithm; Proportional hazards model; Random effects; Semi-competing risks (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947318300409
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:124:y:2018:i:c:p:53-70
DOI: 10.1016/j.csda.2018.02.003
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().