EconPapers    
Economics at your fingertips  
 

On the sample mean after a group sequential trial

Ben Berckmoes, Anna Ivanova and Geert Molenberghs

Computational Statistics & Data Analysis, 2018, vol. 125, issue C, 104-118

Abstract: A popular setting in medical statistics is a group sequential trial with independent and identically distributed normal outcomes, in which interim analyses of the sum of the outcomes are performed. Based on a prescribed stopping rule, one decides after each interim analysis whether the trial is stopped or continued. Consequently, the actual length of the study is a random variable. It is reported in the literature that the interim analyses may cause bias if one uses the ordinary sample mean to estimate the location parameter. For a generic stopping rule, which contains many classical stopping rules as a special case, explicit formulas for the expected length of the trial, the bias, and the mean squared error (MSE) are provided. It is deduced that, for a fixed number of interim analyses, the bias and the MSE converge to zero if the first interim analysis is performed not too early. In addition, optimal rates for this convergence are provided. Furthermore, under a regularity condition, asymptotic normality in total variation distance for the sample mean is established. A conclusion for naive confidence intervals based on the sample mean is derived. It is also shown how the developed theory naturally fits in the broader framework of likelihood theory in a group sequential trial setting. A simulation study underpins the theoretical findings.

Keywords: Bias; Confidence interval; Group sequential trial; Likelihood theory; Mean squared error; Sample mean (search for similar items in EconPapers)
Date: 2018
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947318300768
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:125:y:2018:i:c:p:104-118

DOI: 10.1016/j.csda.2018.03.016

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:csdana:v:125:y:2018:i:c:p:104-118