EconPapers    
Economics at your fingertips  
 

Supervised dimension reduction for ordinal predictors

Liliana Forzani, Rodrigo García Arancibia (), Pamela Llop and Diego Tomassi

Computational Statistics & Data Analysis, 2018, vol. 125, issue C, 136-155

Abstract: In applications involving ordinal predictors, common approaches to reduce dimensionality are either extensions of unsupervised techniques such as principal component analysis, or variable selection procedures that rely on modeling the regression function. A supervised dimension reduction method tailored to ordered categorical predictors is introduced which uses a model-based dimension reduction approach, inspired by extending sufficient dimension reductions to the context of latent Gaussian variables. The reduction is chosen without modeling the response as a function of the predictors and does not impose any distributional assumption on the response or on the response given the predictors. A likelihood-based estimator of the reduction is derived and an iterative expectation–maximization type algorithm is proposed to alleviate the computational load and thus make the method more practical. A regularized estimator, which simultaneously achieves variable selection and dimension reduction, is also presented. Performance of the proposed method is evaluated through simulations and a real data example for socioeconomic index construction, comparing favorably to widespread use techniques.

Keywords: Expectation–maximization (EM); Latent variables reduction subspace; SES index construction; Supervised classification; Variable selection (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: Track citations by RSS feed

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S016794731830080X
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:125:y:2018:i:c:p:136-155

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Dana Niculescu ().

 
Page updated 2019-04-09
Handle: RePEc:eee:csdana:v:125:y:2018:i:c:p:136-155