Joint regression analysis of mixed-type outcome data via efficient scores
Scott Marchese and
Guoqing Diao
Computational Statistics & Data Analysis, 2018, vol. 125, issue C, 156-170
Abstract:
Joint analysis of multivariate outcomes composed of mixed data types (continuous, count, binary, survival, etc.) induces special complexity in model specification and analysis. When the scientific question of interest involves a joint effect of covariate(s) of interest on the set of outcome variables, specifying a full probability model may be infeasible, undesirably complex, or computationally intractable. A flexible method to estimate and conduct inference on such joint effects is presented which accounts for correlation among the outcomes without needing to explicitly specify their joint distribution. Simulation studies and an analysis of health care data illustrate the approach and its operating characteristics vis-à-vis other methods.
Keywords: Bonferroni correction; Efficient score; Generalized estimating equations; Mixed-type data; Multiplier bootstrap (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947318300471
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:125:y:2018:i:c:p:156-170
DOI: 10.1016/j.csda.2018.02.008
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().