EconPapers    
Economics at your fingertips  
 

Continuum directions for supervised dimension reduction

Sungkyu Jung

Computational Statistics & Data Analysis, 2018, vol. 125, issue C, 27-43

Abstract: Dimension reduction of multivariate data supervised by auxiliary information is considered. A series of basis for dimension reduction is obtained as minimizers of a novel criterion. The proposed method is akin to continuum regression, and the resulting basis is called continuum directions. With a presence of binary supervision data, these directions continuously bridge the principal component, mean difference and linear discriminant directions, thus ranging from unsupervised to fully supervised dimension reduction. High-dimensional asymptotic studies of continuum directions for binary supervision reveal several interesting facts. The conditions under which the sample continuum directions are inconsistent, but their classification performance is good, are specified. While the proposed method can be directly used for binary and multi-category classification, its generalizations to incorporate any form of auxiliary data are also presented. The proposed method enjoys fast computation, and the performance is better or on par with more computer-intensive alternatives.

Keywords: Continuum regression; Dimension reduction; Linear discriminant analysis; High-dimension; Low-sample-size (HDLSS); Maximum data piling; Principal component analysis (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947318300756
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:125:y:2018:i:c:p:27-43

DOI: 10.1016/j.csda.2018.03.015

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:csdana:v:125:y:2018:i:c:p:27-43