Identifying outliers using multiple kernel canonical correlation analysis with application to imaging genetics
Md. Ashad Alam,
Vince D. Calhoun and
Yu-Ping Wang
Computational Statistics & Data Analysis, 2018, vol. 125, issue C, 70-85
Abstract:
Identifying significant outliers or atypical objects from multimodal datasets is an essential and challenging issue for biomedical research. This problem is addressed, using the influence function of multiple kernel canonical correlation analysis. First, the influence function (IF) of the kernel mean element, the kernel covariance operator, the kernel cross-covariance operator and kernel canonical correlation analysis (kernel CCA) are studied. Second, an IF of multiple kernel CCA is proposed, which can be applied to multimodal datasets. Third, a visualization method is proposed to detect influential observations of multiple sources of data based on the IF of kernel CCA and multiple kernel CCA. Finally, to validate the method, experiments on both synthesized and imaging genetics data (e.g., SNP, fMRI, and DNA methylation) are performed. To examine the outliers, both the stem-and-leaf display and distribution based technique are used. The performance of the proposed approach is illustrated on 116 candidate regions of interest (ROIs) from the fMRI data of schizophrenia study to identify significant ROIs. The proposed method and two state-of-the-art statistical methods have identified 8, 34, and 10 ROIs, respectively. Based on an online database, the brain mappings of the selected common 7 ROIs indicate the irregular brain regions susceptible to schizophrenia. The results demonstrate that the proposed method is capable of analyzing outliers and the influence of observations, and can be applicable to many other biomedical data which are often high-dimensional and multi-modal.
Keywords: Multiple kernel CCA; Influence function; Outlier detection; Multimodal datasets; Imaging genetics (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947318300732
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:125:y:2018:i:c:p:70-85
DOI: 10.1016/j.csda.2018.03.013
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().