EconPapers    
Economics at your fingertips  
 

Point process models for novelty detection on spatial point patterns and their extremes

Stijn E. Luca, Marco A.F. Pimentel, Peter J. Watkinson and David A. Clifton

Computational Statistics & Data Analysis, 2018, vol. 125, issue C, 86-103

Abstract: Novelty detection is a particular example of pattern recognition identifying patterns that departure from some model of “normal behaviour”. The classification of point patterns is considered that are defined as sets of N observations of a multivariate random variable X and where the value N follows a discrete stochastic distribution. The use of point process models is introduced that allow us to describe the length N as well as the geometrical configuration in data space of such patterns. It is shown that such infinite dimensional study can be translated into a one-dimensional study that is analytically tractable for a multivariate Gaussian distribution. Moreover, for other multivariate distributions, an analytic approximation is obtained, by the use of extreme value theory, to model point patterns that occur in low-density regions as defined by X. The proposed models are demonstrated on synthetic and real-world data sets.

Keywords: Novelty detection; Point processes; Extreme value theory; One-class classification; Process monitoring (search for similar items in EconPapers)
Date: 2018
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947318300811
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:125:y:2018:i:c:p:86-103

DOI: 10.1016/j.csda.2018.03.019

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:csdana:v:125:y:2018:i:c:p:86-103