Point process models for novelty detection on spatial point patterns and their extremes
Stijn E. Luca,
Marco A.F. Pimentel,
Peter J. Watkinson and
David A. Clifton
Computational Statistics & Data Analysis, 2018, vol. 125, issue C, 86-103
Abstract:
Novelty detection is a particular example of pattern recognition identifying patterns that departure from some model of “normal behaviour”. The classification of point patterns is considered that are defined as sets of N observations of a multivariate random variable X and where the value N follows a discrete stochastic distribution. The use of point process models is introduced that allow us to describe the length N as well as the geometrical configuration in data space of such patterns. It is shown that such infinite dimensional study can be translated into a one-dimensional study that is analytically tractable for a multivariate Gaussian distribution. Moreover, for other multivariate distributions, an analytic approximation is obtained, by the use of extreme value theory, to model point patterns that occur in low-density regions as defined by X. The proposed models are demonstrated on synthetic and real-world data sets.
Keywords: Novelty detection; Point processes; Extreme value theory; One-class classification; Process monitoring (search for similar items in EconPapers)
Date: 2018
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947318300811
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:125:y:2018:i:c:p:86-103
DOI: 10.1016/j.csda.2018.03.019
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().