Sensible functional linear discriminant analysis
Lu-Hung Chen and
Ci-Ren Jiang
Computational Statistics & Data Analysis, 2018, vol. 126, issue C, 39-52
Abstract:
Fisher’s linear discriminant analysis (LDA) is extended to both densely recorded functional data and sparsely observed longitudinal data for general c-category classification problems. An efficient approach is proposed to identify the optimal LDA projections in addition to managing the noninvertibility issue of the covariance operator emerging from this extension. To tackle the challenge of projecting sparse data to the LDA directions, a conditional expectation technique is employed. The asymptotic properties of the proposed estimators are investigated and asymptotically perfect classification is shown to be achievable in certain circumstances. The performance of this new approach is further demonstrated with both simulated data and real examples.
Keywords: Classification; Functional data; Linear discriminant analysis; Longitudinal data; Smoothing (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S016794731830094X
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:126:y:2018:i:c:p:39-52
DOI: 10.1016/j.csda.2018.04.005
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().