EconPapers    
Economics at your fingertips  
 

A Gamma-frailty proportional hazards model for bivariate interval-censored data

Prabhashi W. Withana Gamage, Christopher S. McMahan, Lianming Wang and Wanzhu Tu

Computational Statistics & Data Analysis, 2018, vol. 128, issue C, 354-366

Abstract: Correlated survival data naturally arise from many clinical and epidemiological studies. For the analysis of such data, the Gamma-frailty proportional hazards (PH) model is a popular choice because the regression parameters have marginal interpretations and the statistical association between the failure times can be explicitly quantified via Kendall’s tau. Despite their popularity, Gamma-frailty PH models for correlated interval-censored data have not received as much attention as analogous models for right-censored data. A Gamma-frailty PH model for bivariate interval-censored data is presented and an easy to implement expectation–maximization (EM) algorithm for model fitting is developed. The proposed model adopts a monotone spline representation for the purposes of approximating the unknown conditional cumulative baseline hazard functions, significantly reducing the number of unknown parameters while retaining modeling flexibility. The EM algorithm was derived from a data augmentation procedure involving latent Poisson random variables. Extensive numerical studies illustrate that the proposed method can provide reliable estimation and valid inference, and is moreover robust to the misspecification of the frailty distribution. To further illustrate its use, the proposed method is used to analyze data from an epidemiological study of sexually transmitted infections.

Keywords: EM algorithm; Gamma-frailty; Interval-censored data; Monotone splines; Multivariate regression; Poisson latent variables; Proportional hazards model; Survival analysis (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations Track citations by RSS feed

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947318301828
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:128:y:2018:i:c:p:354-366

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Dana Niculescu ().

 
Page updated 2018-11-10
Handle: RePEc:eee:csdana:v:128:y:2018:i:c:p:354-366