Greedy active learning algorithm for logistic regression models
Hsiang-Ling Hsu,
Yuan-chin Ivan Chang and
Ray-Bing Chen
Computational Statistics & Data Analysis, 2019, vol. 129, issue C, 119-134
Abstract:
We study a logistic model-based active learning procedure for binary classification problems, in which we adopt a batch subject selection strategy with a modified sequential experimental design method. Moreover, accompanying the proposed subject selection scheme, we simultaneously conduct a greedy variable selection procedure such that we can update the classification model with all labeled training subjects. The proposed algorithm repeatedly performs both subject and variable selection steps until a prefixed stopping criterion is reached. Our numerical results show that the proposed procedure has competitive performance, with smaller training size and a more compact model compared with that of the classifier trained with all variables and a full data set. We also apply the proposed procedure to a well-known wave data set (Breiman et al., 1984) and a MAGIC gamma telescope data set to confirm the performance of our method.
Keywords: Active learning algorithm; D-efficiency criterion; Forward selection; Graft optimization (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947318301968
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:129:y:2019:i:c:p:119-134
DOI: 10.1016/j.csda.2018.08.013
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().