EconPapers    
Economics at your fingertips  
 

Bayesian functional joint models for multivariate longitudinal and time-to-event data

Kan Li and Sheng Luo

Computational Statistics & Data Analysis, 2019, vol. 129, issue C, 14-29

Abstract: A multivariate functional joint model framework is proposed which enables the repeatedly measured functional outcomes, scalar outcomes, and survival process to be modeled simultaneously while accounting for association among the multiple (functional and scalar) longitudinal and survival processes. This data structure is increasingly common across medical studies of neurodegenerative diseases and is exemplified by the motivating Alzheimer’s Disease Neuroimaging Initiative (ADNI) study, in which serial brain imaging, clinical and neuropsychological assessments are collected to measure the progression of Alzheimer’s disease (AD). The proposed functional joint model consists of a longitudinal function-on-scalar submodel, a regular longitudinal submodel, and a survival submodel which allows time-dependent functional and scalar covariates. A Bayesian approach is adopted for parameter estimation and a dynamic prediction framework is introduced for predicting the subjects’ future health outcomes and risk of AD conversion. The proposed model is evaluated by a simulation study and is applied to the motivating ADNI study.

Keywords: Longitudinal functional data; Joint modeling; Dynamic prediction; Alzheimer’s disease (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947318301816
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:129:y:2019:i:c:p:14-29

DOI: 10.1016/j.csda.2018.07.015

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:csdana:v:129:y:2019:i:c:p:14-29