Generalized additive partial linear models for analyzing correlated data
Roberto F. Manghi,
Francisco José A. Cysneiros and
Gilberto A. Paula
Computational Statistics & Data Analysis, 2019, vol. 129, issue C, 47-60
Abstract:
Statistical procedures are proposed in generalized additive partial linear models (GAPLM) for analyzing correlated data. A reweighed iterative process based on the backfitting algorithm is derived for the parameter estimation from a penalized GEE. Discussions on the inferential aspects of GAPLM, particularly on the asymptotic properties of the former estimators as well as on the effective degrees of freedom derivation, are given. Diagnostic methods, such as leverage measures, residual analysis and local influence graphs, under different perturbation schemes, are proposed. A small simulation study is performed to assess the empirical distribution of the parametric and nonparametric estimators as well as of some proposed residuals. Finally, a motivating data set is analyzed by the methodology developed through the paper.
Keywords: Backfitting algorithm; Diagnostic procedures; Longitudinal data; Natural cubic splines; Semiparametric models (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947318301889
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:129:y:2019:i:c:p:47-60
DOI: 10.1016/j.csda.2018.08.005
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().