EconPapers    
Economics at your fingertips  
 

Latent Gaussian random field mixture models

David Bolin, Jonas Wallin and Finn Lindgren

Computational Statistics & Data Analysis, 2019, vol. 130, issue C, 80-93

Abstract: For many problems in geostatistics, land cover classification, and brain imaging the classical Gaussian process models are unsuitable due to sudden, discontinuous, changes in the data. To handle data of this type, we introduce a new model class that combines discrete Markov random fields (MRFs) with Gaussian Markov random fields. The model is defined as a mixture of several, possibly multivariate, Gaussian Markov random fields. For each spatial location, the discrete MRF determines which of the Gaussian fields in the mixture that is observed. This allows for the desired discontinuous changes of the latent processes, and also gives a probabilistic representation of where the changes occur spatially. By combining stochastic gradient minimization with sparse matrix techniques we obtain computationally efficient methods for both likelihood-based parameter estimation and spatial interpolation. The model is compared to Gaussian models and standard MRF models using simulated data and in application to upscaling of soil permeability data.

Keywords: Random field; Spatial statistics; Gaussian mixture; Stochastic gradient; Geostatistics; Gaussian process (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947318301907
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:130:y:2019:i:c:p:80-93

DOI: 10.1016/j.csda.2018.08.007

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:csdana:v:130:y:2019:i:c:p:80-93