EconPapers    
Economics at your fingertips  
 

Two-step estimation of time-varying additive model for locally stationary time series

Lixia Hu, Tao Huang and Jinhong You

Computational Statistics & Data Analysis, 2019, vol. 130, issue C, 94-110

Abstract: In the analysis of locally stationary process, a time-varying additive model (tvAM) can effectively capture the dynamic feature of regression function. In combination with the strengths of tensor product of B-spline smoothing and local linear smoothing method, a two-step estimation method is proposed. It is shown that the proposed estimator is uniformly consistent and asymptotically oracle efficient as if the other component functions were known. Furthermore, a nonparametric bootstrap procedure is proposed to test the time-varying property of regression function. Simulation studies investigate the finite-sample performance of the proposed methods and validate the asymptotic theory. An environmental dataset illustrating the proposed method is also considered.

Keywords: Time-varying additive model; Locally stationary process; α-mixing; Local linear estimator; Tensor product (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947318302068
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:130:y:2019:i:c:p:94-110

DOI: 10.1016/j.csda.2018.08.023

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:csdana:v:130:y:2019:i:c:p:94-110