Gaussian process methods for nonparametric functional regression with mixed predictors
Bo Wang and
Aiping Xu
Computational Statistics & Data Analysis, 2019, vol. 131, issue C, 80-90
Abstract:
Gaussian process methods are proposed for nonparametric functional regression for both scalar and functional responses with mixed multidimensional functional and scalar predictors. The proposed models allow the response variables to depend on the entire trajectories of the functional predictors. They inherit the desirable properties of Gaussian process regression, and can naturally accommodate both scalar and functional variables as the predictors, as well as easy to obtain and express uncertainty in predictions. The numerical experiments show that the proposed methods significantly outperform the competing models, and their usefulness is also demonstrated by the application to two real datasets.
Keywords: Functional regression; Functional principal component analysis; Gaussian process regression; Nonparametric methods; Semi-metric (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947318301750
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:131:y:2019:i:c:p:80-90
DOI: 10.1016/j.csda.2018.07.009
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().