Hypothesis testing for finite mixture models
Supawadee Wichitchan,
Weixin Yao and
Guangren Yang
Computational Statistics & Data Analysis, 2019, vol. 132, issue C, 180-189
Abstract:
Hypothesis testing for finite mixture model has long been a challenging problem. The standard likelihood ratio test (LRT) does not have the usual asymptotic χ2 distribution partly because the mixture model is not identifiable under null hypothesis. A simple class of hypothesis test procedures for finite mixture models based on goodness of fit (GOF) test statistics is investigated. The suggested hypothesis test procedure is easy to understand and use and can be applied to many mixture models with continuous data. Five commonly used goodness of fit test statistics are considered and compared. The limit distribution of test statistics is simulated based on the bootstrap method. It is demonstrated that a simple application of GOF test statistics to finite mixture models can provide comparable or even superior hypothesis test performance compared to the existing cutting edge EM test method through extensive simulation studies. The effectiveness of GOF test to choose the number components is also demonstrated based on limited empirical studies and a real data application.
Keywords: Mixture models; Hypothesis testing; Goodness of fit test; Number of components; Model selection (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947318301142
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:132:y:2019:i:c:p:180-189
DOI: 10.1016/j.csda.2018.05.005
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().