Prediction with a flexible finite mixture-of-regressions
Ilmari Ahonen,
Jaakko Nevalainen and
Denis Larocque
Computational Statistics & Data Analysis, 2019, vol. 132, issue C, 212-224
Abstract:
Finite mixture regression (FMR) is widely used for modeling data that originate from heterogeneous populations. In these settings, FMR can offer increased predictive power compared to more traditional one-class models. However, existing FMR methods rely heavily on mixtures of linear models, where the linear predictor must be given as an input. A flexible FMR model is presented using a combination of the random forest learner and a penalized linear FMR. The performance of the new method is assessed by predictive log-likelihood in extensive simulation studies. The method is shown to achieve equal performance with the existing FMR methods when the true regression functions are in fact linear and superior performance in cases where at least one of the regression functions is nonlinear. The method can handle a large number of covariates, and its predictive ability is not greatly affected by surplus variables.
Keywords: Finite mixture regression; Random forest; Prediction intervals; Bootstrap; Penalization (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947318300136
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:132:y:2019:i:c:p:212-224
DOI: 10.1016/j.csda.2018.01.012
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().