EconPapers    
Economics at your fingertips  
 

Robust assessment of two-treatment higher-order cross-over designs against missing values

P.J. Godolphin and E.J. Godolphin

Computational Statistics & Data Analysis, 2019, vol. 132, issue C, 31-45

Abstract: In scientific experiments where human behaviour or animal response is intrinsically involved, such as clinical trials, there is a strong possibility of recording missing values. Missing data in a clinical trial has the potential to impact severely on study quality and precision of estimates. In studies which use a cross-over design, even a small number of missing values can lead to the eventual design being disconnected. In this case, some or all of the treatment contrasts under test cannot be estimated and the experiment is compromised since little can be achieved from it. Experiments comparing two treatments that use a cross-over design with more than two experimental periods are considered. Methods to limit the impact of missing data on study results are explored. It is shown that the breakdown number and, if it exists, perpetual connectivity of the planned design are useful robustness properties which guard against the possibility of a disconnected eventual design. A procedure is proposed which assesses planned designs for robustness against missing values and the method is illustrated by assessing several designs that have been previously considered on cross-over studies.

Keywords: Cross-over design; Clinical trial; Subject drop-out; Breakdown number; Perpetually connected (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S016794731830166X
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:132:y:2019:i:c:p:31-45

DOI: 10.1016/j.csda.2018.06.020

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:csdana:v:132:y:2019:i:c:p:31-45