Spectral clustering via sparse graph structure learning with application to proteomic signaling networks in cancer
Sayantan Banerjee,
Rehan Akbani and
Veerabhadran Baladandayuthapani
Computational Statistics & Data Analysis, 2019, vol. 132, issue C, 46-69
Abstract:
Clustering methods for multivariate data exploiting the underlying geometry of the graphical structure between variables are presented. As opposed to standard approaches for graph clustering that assume known graph structures, the edge structure of the unknown graph is first estimated using sparse regression based approaches for sparse graph structure learning. Subsequently, graph clustering on the lower dimensional projections of the graph is performed based on Laplacian embeddings using a penalized k-means approach, motivated by Dirichlet process mixture models in Bayesian nonparametrics. In contrast to standard algorithmic approaches for known graphs, the proposed method allows estimation and inference for both graph structure learning and clustering. More importantly, the arguments for Laplacian embeddings as suitable projections for graph clustering are formalized by providing theoretical support for the consistency of the eigenspace of the estimated graph Laplacians. Fast computational algorithms are proposed to scale the method to large number of nodes. Extensive simulations are presented to compare the clustering performance with standard methods. The methods are applied to a novel pan-cancer proteomic data set, and protein networks and clusters are evaluated across multiple different cancer types.
Keywords: Graph clustering; Graph structure learning; Proteomic data; Spectral clustering (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947318301920
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:132:y:2019:i:c:p:46-69
DOI: 10.1016/j.csda.2018.08.009
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().