Simultaneous variable selection and class fusion with penalized distance criterion based classifiers
Ying Sheng and
Qihua Wang
Computational Statistics & Data Analysis, 2019, vol. 133, issue C, 138-152
Abstract:
Two new methods are proposed to solve the problem of constructing multiclass classifiers, selecting important variables for classification and determining corresponding discriminative variables for each pair of classes simultaneously in the high-dimensional setting. Different from existing methods, which are based on the separate estimation of the precision matrix and mean vectors, the proposed methods construct classifiers by estimating products of the precision matrix and mean vectors or all discriminant directions directly with appropriate penalties. This leads to the use of the distance criterion instead of the log-likelihood used in the existing literature. The proposed methods can not only consistently select important variables for classification but also consistently determine corresponding discriminative variables for each pair of classes. For the multiclass classification problem, conditional misclassification error rates of classifiers constructed by the proposed methods converge to the misclassification error rate of the Bayes rule in probability and rates of convergence are also obtained. Finally, simulations and the real data analysis well demonstrate good performances of the proposed methods in comparison with existing methods.
Keywords: Linear discriminant analysis; Discriminant directions; Variable selection; Class fusion; Misclassification error rate (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947318302305
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:133:y:2019:i:c:p:138-152
DOI: 10.1016/j.csda.2018.09.002
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().