Modal regression statistical inference for longitudinal data semivarying coefficient models: Generalized estimating equations, empirical likelihood and variable selection
Kangning Wang,
Shaomin Li,
Xiaofei Sun and
Lu Lin
Computational Statistics & Data Analysis, 2019, vol. 133, issue C, 257-276
Abstract:
Modal regression is a good alternative of the mean regression, because of its merits of both robustness and high inference efficiency. This paper is concerned with modal regression based statistical inference for semivarying coefficient models with longitudinal data, which include modal regression generalized estimating equations, modal regression empirical likelihood inference procedure for the parametric component and smooth- threshold modal regression generalized estimating equations for variable selection. These methods can incorporate the correlation structure of the longitudinal data and inherit the robustness and efficiency superiorities of the modal regression by choosing an appropriate data adaptive tuning parameter. Under mild conditions, the large sample theoretical properties are established. Simulation studies and real data analysis are also included to illustrate the finite sample performance.
Keywords: Partial linear varying coefficient models; Variable selection; Robustness; Efficiency; Empirical likelihood (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S016794731830255X
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:133:y:2019:i:c:p:257-276
DOI: 10.1016/j.csda.2018.10.010
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().