Sparse-Group Independent Component Analysis with application to yield curves prediction
Ying Chen,
Linlin Niu,
Ray-Bing Chen and
Qiang He
Computational Statistics & Data Analysis, 2019, vol. 133, issue C, 76-89
Abstract:
We propose a Sparse-Group Independent Component Analysis (SG-ICA) method to extract independent factors from high dimensional multivariate data. The method provides a unified and flexible framework that automatically identifies the number of factors and simultaneously estimates a sparse loading matrix, enables us to discover important features and offers improved interpretability of the estimators. We establish the consistency and asymptotic normality of the loading matrix estimator, demonstrate its finite sample performance with simulation studies, and illustrate its application using the daily US Overnight Index Swap rates from Oct 2011 to Mar 2015 with 15 maturities ranging from 1 week to 30 years. With higher efficiency of extracting factors, the forecasting performance of the SG-ICA is remarkably better than the popular parametric DNS model in an era of quantitative easing with short-term interest rate being close to zero.
Keywords: Regularized dimension reduction; Yield curve prediction; Statistically independent factor (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947318302184
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:133:y:2019:i:c:p:76-89
DOI: 10.1016/j.csda.2018.08.027
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().