EconPapers    
Economics at your fingertips  
 

Bayesian hidden Markov models for dependent large-scale multiple testing

Xia Wang, Ali Shojaie and Jian Zou

Computational Statistics & Data Analysis, 2019, vol. 136, issue C, 123-136

Abstract: An optimal and flexible multiple hypotheses testing procedure is constructed for dependent data based on Bayesian techniques, aiming at handling two challenges, namely dependence structure and non-null distribution specification. Ignoring dependence among hypotheses tests may lead to loss of efficiency and bias in decision. Misspecification in the non-null distribution, on the other hand, can result in both false positive and false negative errors. Hidden Markov models are used to accommodate the dependence structure among the tests. Dirichlet mixture process prior is applied on the non-null distribution to overcome the potential pitfalls in distribution misspecification. The testing algorithm based on Bayesian techniques optimizes the false negative rate (FNR) while controlling the false discovery rate (FDR). The procedure is applied to pointwise and clusterwise analysis. Its performance is compared with existing approaches using both simulated and real data examples.

Keywords: Bayesian hierarchical model; Dirichlet mixture process prior; False discovery rate; Hidden Markov model; Multiple hypotheses testing (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947319300234
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:136:y:2019:i:c:p:123-136

DOI: 10.1016/j.csda.2019.01.009

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:csdana:v:136:y:2019:i:c:p:123-136