A graph Laplacian prior for Bayesian variable selection and grouping
Sounak Chakraborty and
Aurelie C. Lozano
Computational Statistics & Data Analysis, 2019, vol. 136, issue C, 72-91
Abstract:
Variable selection, or subset selection, plays a fundamental role in modern statistical modeling. In many applications, interactions exist between the selected variables. Statistical modeling of such dependence structure is of great importance. In this paper, the focus is on cases in which some correlated predictors have similar effects on the response, and will be grouped into predictive clusters. Here a graph Laplacian prior (GL-prior) is introduced within the Bayesian framework, the Maximum A Posterior (MAP) estimate which simultaneously allows for variable selection, coefficient estimation and predictive group identification. The connections between the GL-prior (graph Laplacian) and the existing regularized regression methods are established accordingly. For computation, an EM based algorithm is proposed, where an efficient augmented Lagrangian approach is utilized for the maximization step. The performance of the proposed approach is examined through simulation studies, followed by a microarray data analysis concerning the plant Arabidopsis thaliana.
Keywords: Bayesian analysis; Graph Laplacian matrix; Predictive cluster; Regularized regression; Variable selection (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947319300040
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:136:y:2019:i:c:p:72-91
DOI: 10.1016/j.csda.2019.01.003
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().