A modified mean-variance feature-screening procedure for ultrahigh-dimensional discriminant analysis
Shengmei He,
Shuangge Ma and
Wangli Xu
Computational Statistics & Data Analysis, 2019, vol. 137, issue C, 155-169
Abstract:
Cui et al. (2015) proposed a mean–variance feature-screening method based on the index MV(X|Y). By modifying MV(X|Y) with a weight function, a new index AD(X,Y) is introduced to measure the dependence between X and Y, and a corresponding feature-screening procedure called Anderson–Darling sure independence screening (AD-SIS) is proposed for ultrahigh-dimensional discriminant analysis. The sure screening and ranking consistency properties are established under mild conditions. It is shown that AD-SIS is model free with no specification of model structure and can be applied to multi-classification. Furthermore, AD-SIS is robust against heavy-tailed distributions. As such, it can be used to identify the tail difference for the covariate’s distribution. The finite-sample performance of AD-SIS is assessed by simulation and real data analysis. The results show that, compared with existing methods, AD-SIS can be more competitive for feature screening for ultrahigh-dimensional discriminant analysis.
Keywords: Ultrahigh-dimensional data; Feature screening; Sure screening; Model free (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947319300386
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:137:y:2019:i:c:p:155-169
DOI: 10.1016/j.csda.2019.02.003
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().