Maximum penalized likelihood estimation of additive hazards models with partly interval censoring
Jinqing Li and
Jun Ma
Computational Statistics & Data Analysis, 2019, vol. 137, issue C, 170-180
Abstract:
Existing likelihood methods for the additive hazards model with interval censored survival data are limited and often ignore the non-negative constraints on hazards. This paper proposes a maximum penalized likelihood method to fit additive hazards models with interval censoring. Our method firstly models the baseline hazard using a finite number of non-negative basis functions, and then regression coefficients and baseline hazard are estimated simultaneously by maximizing a penalized log-likelihood function, where a penalty function is introduced to regularize the baseline hazard estimate. In the estimation procedure, non-negative constraints are imposed on both the baseline hazard and the hazard of each subject. A primal–dual interior-point algorithm is applied to solve the constrained optimization problem. Asymptotic properties are obtained and a simulation study is conducted for assessment of the proposed method.
Keywords: Additive hazards model; Interval censoring; Maximum penalized likelihood estimation; Primal–dual interior point algorithm; Automatic smoothing value selection (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947319300593
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:137:y:2019:i:c:p:170-180
DOI: 10.1016/j.csda.2019.02.010
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().