Location-adjusted Wald statistics for scalar parameters
Claudia Di Caterina and
Ioannis Kosmidis
Computational Statistics & Data Analysis, 2019, vol. 138, issue C, 126-142
Abstract:
Inference about a scalar parameter of interest is a core statistical task that has attracted immense research in statistics. The Wald statistic is a prime candidate for the task, on the grounds of the asymptotic validity of the standard normal approximation to its finite-sample distribution, simplicity and low computational cost. It is well known, though, that this normal approximation can be inadequate, especially when the sample size is small or moderate relative to the number of parameters. A novel, algebraic adjustment to the Wald statistic is proposed, delivering significant improvements in inferential performance with only small implementation and computational overhead, predominantly due to additional matrix multiplications. The Wald statistic is viewed as an estimate of a transformation of the model parameters and is appropriately adjusted, using either maximum likelihood or reduced-bias estimators, bringing its expectation asymptotically closer to zero. The location adjustment depends on the expected information, an approximation to the bias of the estimator, and the derivatives of the transformation, which are all either readily available or easily obtainable in standard software for a wealth of models. An algorithm for the implementation of the location-adjusted Wald statistics in general models is provided, as well as a bootstrap scheme for the further scale correction of the location-adjusted statistic. Ample analytical and numerical evidence is presented for the adoption of the location-adjusted statistic in prominent modelling settings, including inference about log-odds and binomial proportions, logistic regression in the presence of nuisance parameters, beta regression, and gamma regression. The location-adjusted Wald statistics are used for the construction of significance maps for the analysis of multiple sclerosis lesions from MRI data.
Keywords: Beta regression; Bias reduction; Data separation; Generalized linear models; Infinite estimates; Magnetic resonance imaging (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S016794731930088X
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:138:y:2019:i:c:p:126-142
DOI: 10.1016/j.csda.2019.04.004
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().