Efficient inference for nonlinear state space models: An automatic sample size selection rule
Jing Cheng and
Ngai Hang Chan
Computational Statistics & Data Analysis, 2019, vol. 138, issue C, 143-154
Abstract:
This paper studies the maximum likelihood estimation of nonlinear state space models. Particle Markov chain Monte Carlo method is introduced to implement the Monte Carlo expectation maximization algorithm for more accurate and robust estimation. Under this framework, an automated sample size selection criterion is constructed via renewal theory. This criterion would increase the sample size when the relative likelihood indicates that the parameters are close to each other. The proposed methodology is applied to the stochastic volatility model and another nonlinear state space model for illustration, where the results show better estimation performance.
Keywords: Nonlinear state space models; Particle Markov chain Monte Carlo method; Monte Carlo expectation maximization algorithm; Sample size selection criterion (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947319300775
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:138:y:2019:i:c:p:143-154
DOI: 10.1016/j.csda.2019.03.010
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().