EconPapers    
Economics at your fingertips  
 

The empirical likelihood prior applied to bias reduction of general estimating equations

Albert Vexler, Li Zou and Alan D. Hutson

Computational Statistics & Data Analysis, 2019, vol. 138, issue C, 96-106

Abstract: The practice of employing empirical likelihood (EL) components in place of parametric likelihood functions in the construction of Bayesian-type procedures has been well-addressed in the modern statistical literature. The EL prior, a Jeffreys-type prior, which asymptotically maximizes the Shannon mutual information between data and the parameters of interest, is rigorously derived. The focus of the proposed approach is on an integrated Kullback–Leibler distance between the EL-based posterior and prior density functions. The EL prior density is the density function for which the corresponding posterior form is asymptotically negligibly different from the EL. The proposed result can be used to develop a methodology for reducing the asymptotic bias of solutions of general estimating equations and M-estimation schemes by removing the first-order term. This technique is developed in a similar manner to methods employed to reduce the asymptotic bias of maximum likelihood estimates via penalizing the underlying parametric likelihoods by their Jeffreys invariant priors. A real data example related to a study of myocardial infarction illustrates the attractiveness of the proposed technique in practical aspects.

Keywords: Asymptotic bias; Biased estimating equations; Empirical likelihood; Expected Kullback–Leibler distance; Penalized likelihood; Reference prior (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947319300854
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:138:y:2019:i:c:p:96-106

DOI: 10.1016/j.csda.2019.04.001

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:csdana:v:138:y:2019:i:c:p:96-106