EconPapers    
Economics at your fingertips  
 

A distribution-free test of independence based on mean variance index

Hengjian Cui and Wei Zhong

Computational Statistics & Data Analysis, 2019, vol. 139, issue C, 117-133

Abstract: A new test based on mean variance (MV) index is proposed for testing the independence between a categorical random variable Y and a continuous one X. The MV index can be considered as the weighted average of Cramér–von Mises distances between the conditional distribution functions of X given each class of Y and the unconditional distribution function of X. The MV index is zero if and only if X and Y are independent. The new MV test between X and Y enjoys several appealing merits. First, an explicit form of the asymptotic null distribution is derived under the independence between X and Y. It provides an efficient way to compute critical values and p-value. Second, no assumption on the distributions of two random variables is required and the new test statistic is invariant under one-to-one transformations of the continuous random variable. It is essentially a rank test and distribution-free, so it is resistant to heavy-tailed distributions and extreme values in practice. Monte Carlo simulations demonstrate its excellent finite-sample performance. In applications, the MV test is used in two high dimensional gene expression data to detect the significant genes associated with tumor types.

Keywords: Asymptotic null distribution; Cramér–von Mises distance; Conditional distribution function; Mean variance index; Test of independence (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S016794731930115X
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:139:y:2019:i:c:p:117-133

DOI: 10.1016/j.csda.2019.05.004

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:csdana:v:139:y:2019:i:c:p:117-133