EconPapers    
Economics at your fingertips  
 

Estimating population size of heterogeneous populations with large data sets and a large number of parameters

Haoqi Li, Huazhen Lin, Paul S.F. Yip and Yuan Li

Computational Statistics & Data Analysis, 2019, vol. 139, issue C, 34-44

Abstract: A generalized partial linear regression model is proposed to estimate population size at a specific time from multiple lists of a time-varying and heterogeneous population. The challenge is that we have millions of records and hundreds of parameters for a long period of time. This presents a challenge for data analysis, mainly due to the limitation of computer memory, computational convergence and infeasibility. In the paper, an analytical methodology is proposed for modeling a large data set with a large number of parameters. The basic idea is to apply the maximum likelihood estimator to data observed at each time separately, and then combine these results via weighted averages so that the final estimator becomes the maximum likelihood estimator of the whole data set (full MLE). The asymptotic distribution and inference of the proposed estimators is derived. Simulation studies show that the proposed procedure gives exactly the same performance as the full MLE, but the proposed method is computationally feasible while the full MLE is not, and has much lower computational cost than the full MLE if both methods work. The proposed method is applied to estimate the number of drug-abusers in Hong Kong over the period 1977–2014.

Keywords: Drug abusers; Generalized partial linear regression model; Large data set; Maximum likelihood estimator; Multiple-list (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947319301069
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:139:y:2019:i:c:p:34-44

DOI: 10.1016/j.csda.2019.04.016

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:csdana:v:139:y:2019:i:c:p:34-44