EconPapers    
Economics at your fingertips  
 

Goodness-of-fit tests for the family of multivariate chi-square copulas

Jean-François Quessy, Louis-Paul Rivest and Marie-Hélène Toupin

Computational Statistics & Data Analysis, 2019, vol. 140, issue C, 21-40

Abstract: Nonparametric moment-based goodness-of-fit tests are developed for the family of chi-square copulas of arbitrary dimensions. This class of dependence models allows for tail asymmetries and contains the family of multivariate normal copulas as a special case. The proposed tests are based on two rank correlation coefficients whose population versions are equal, up to a monotone transformation, when the underlying dependence structure is a chi-square copula. The test statistics are computed from natural rank-based estimations of these two correlation coefficients and their large-sample distributions under the null hypothesis of a chi-square copula are derived; the validity of a parametric bootstrap procedure for the computation of p-values is formally established as well. Particular attention is given to tests for the families of normal and centered chi-square copulas. The simulations that are reported indicate that the new tests are reliable alternatives to those based on the empirical copula, both in the bivariate and multivariate cases. The usefulness of the introduced methodology is illustrated on the five-dimensional Nutrient dataset.

Keywords: Centered chi-square copula; Goodness-of-fit tests; Linear rank statistics; Normal copula; Parametric bootstrap (search for similar items in EconPapers)
Date: 2019
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947319300921
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:140:y:2019:i:c:p:21-40

DOI: 10.1016/j.csda.2019.04.008

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:csdana:v:140:y:2019:i:c:p:21-40